An Input–Output Analysis of Total Requirements of Energy and Greenhouse Gases for All Industrial Sectors in Thailand

by

Oyeshola Kofoworola and Shabbir H. Gheewala

at the

2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006)”

21-23 November 2006, Bangkok, Thailand
Thailand’s Outstanding Energy Problems

- Limited fossil energy reserves
- Energy consumption per GDP projected to hit 2.1 trillion Baht by 2017 at economic growth rate of 5% per year with corresponding increase in dependency on imported energy
- Contributions from main indigenous energy resource (Nat. Gas) to the country’s energy demand cannot be increased.
- Renewable energy sources appear to have high potential, but current contributions to country’s commercial energy are not significant
- Rising oil prices having severe adverse effect on the country’s economy (In 2005 energy import/GDP >10%)
Thailand Energy Situation

Primary Energy Consumption (PEC)

Total Thailand Primary Energy Consumption in 2004: 98.1 Mtoe

Thailand Energy Situation

Final Energy Consumption (FEC)

Biomass, 17.1%
Electricity, 16.1%
Fossil Fuels, 66.8%

Thailand’s energy efficiency policies and programs

- Energy Conservation Act of 1992
- Energy conservation in factories-designated factories
- Energy conservation in large buildings-designated buildings
- Efficiency standards for appliances, building materials and control systems-producers and distributors of energy appliances, equipment, and machineries
- Energy Conservation Program
- ENCON Fund
- Demand-Side Management (DSM) Program
Why is Energy such an Issue?

- Air pollution
- Water pollution
- Climate change
- Soil contamination
- Landscape/Topography alterations
Methodology: Input-Output Analysis

• Provides a description of a local economy
• Predictive model to estimate impacts
• Can help identify sectors where significant reductions in energy and environmental burdens can be achieved
What are Input-Output (IO) Models?

• Static and linear models of the entire economy
• Can be used to estimate the impacts of shocks and changes to an economy
• Limitations of approach:
 – product /sector aggregation
 – technology and purchasing patterns fixed over time
Input-Output Model

• Is centered on the idea of inter-industry transactions:
 – Industries use the products of other industries to produce their own products.
 – For example - automobile producers use steel, glass, rubber, and plastic products to produce automobiles.
 – Outputs from one industry become inputs to another.
 – When you buy a car, you affect the demand for glass, plastic, steel, etc.
Environmental impacts have been correlated with commodity outputs

\[c = [C][I - A^d - M]^{-1} \]

c = total impact
C = matrix of environmental impacts I = Identity matrix,
\(A^d\) = The inter-industrial transaction of n industries
M= Import matrix
I = Unity matrix
Input-Output Theory: the Environmental Equation

\[f^* = [F][I - A^d - M]^{-1} \]

\[EI^T = [ConversionFactor_{f \times 1}]^T \times [f^*_{f \times n}] \]

- \(f^* \) = The total energy content including effect of import commodities to the economy
- \(F \) = Energy consumption matrix
- \(I \) = Identity matrix,
- \(A^d \) = The inter-industrial transaction of \(n \) industries
- \(M \) = Import matrix
- \(EI \) = energy intensity
Database of IO

• 180 Industrial sector economic input-output data
• 180 Industrial sector energy input-output data
• Energy conversion factors (fuels)
Results

Table 1 Top 10 sectors from total energy intensity (2000)

<table>
<thead>
<tr>
<th>No.</th>
<th>Sector Name</th>
<th>TJ/ M Baht</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Petroleum Refinery & Gas Separation Plant</td>
<td>8.43</td>
</tr>
<tr>
<td>(2)</td>
<td>Road Freight Transport</td>
<td>3.10</td>
</tr>
<tr>
<td>(3)</td>
<td>Electricity</td>
<td>2.98</td>
</tr>
<tr>
<td>(4)</td>
<td>Cement</td>
<td>2.64</td>
</tr>
<tr>
<td>(5)</td>
<td>Ocean Transport</td>
<td>2.43</td>
</tr>
<tr>
<td>(6)</td>
<td>Coastal & Inland Water Transport</td>
<td>2.11</td>
</tr>
<tr>
<td>(7)</td>
<td>Route & Non route of Road Passenger Transport</td>
<td>2.05</td>
</tr>
<tr>
<td>(8)</td>
<td>Basic Chemicals</td>
<td>1.88</td>
</tr>
<tr>
<td>(9)</td>
<td>Agricultural Services</td>
<td>1.87</td>
</tr>
<tr>
<td>(10)</td>
<td>Iron and Steel</td>
<td>1.80</td>
</tr>
</tbody>
</table>
Discussion

- Highest total energy intensity is for Petroleum refinery & gas separation plant sector.
- Products from this sector utilized in power and electricity generation sector and also in 156 industrial sectors.
- Trend expected to continue as projections estimate Thailand’s economy to be driven by increased natural gas consumption as percentage of Natural Gas utilized for electricity generation has increased from 57.6% in 1999 to 76% in 2006
- Energy requirements for these sectors generated mainly from combustion of fossil fuels
Results

Table 2 Top 10 sectors from environmental burdens view point

<table>
<thead>
<tr>
<th>No.</th>
<th>Sector</th>
<th>t- CO$_2$-eq / M Baht</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electricity</td>
<td>386.831</td>
</tr>
<tr>
<td>2</td>
<td>Ocean Transport</td>
<td>305.822</td>
</tr>
<tr>
<td>3</td>
<td>Cement</td>
<td>283.087</td>
</tr>
<tr>
<td>4</td>
<td>Coastal & Inland Water Transport</td>
<td>224.140</td>
</tr>
<tr>
<td>5</td>
<td>Road Freight Transport</td>
<td>220.490</td>
</tr>
<tr>
<td>6</td>
<td>Fluorite Ore</td>
<td>186.996</td>
</tr>
<tr>
<td>7</td>
<td>Railways</td>
<td>171.224</td>
</tr>
<tr>
<td>8</td>
<td>Ocean And Coastal Fishing</td>
<td>167.636</td>
</tr>
<tr>
<td>9</td>
<td>Agricultural Services</td>
<td>163.762</td>
</tr>
<tr>
<td>10</td>
<td>Distilling & Blending of Spirit</td>
<td>156.004</td>
</tr>
</tbody>
</table>
Discussion

• Highest CO\textsubscript{2} emission intensity from electricity sector
• Attributed to 76% of its direct energy requirement sourced from Natural Gas and also to its indirect energy requirements (fossil fuels.
• The high emissions of the top ten emitters also result from the combustion of various types of fossil fuels for production processes
Discussion

Comparison of energy and emission intensities (sectoral classification system)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Energy intensity (TJ/ M Baht)</th>
<th>GHG emission Intensity (t- CO$_2$-eq / MBAht)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a (This study)</td>
<td>b (Limm et al)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>13.08</td>
<td>10.27</td>
</tr>
<tr>
<td>Industry</td>
<td>78.39</td>
<td>76.81</td>
</tr>
<tr>
<td>Transportation</td>
<td>13.06</td>
<td>8.84</td>
</tr>
<tr>
<td>Commercial sector</td>
<td>11.7988</td>
<td>10.88</td>
</tr>
<tr>
<td>Energy sector</td>
<td>15.4790</td>
<td>7.00</td>
</tr>
<tr>
<td>Total</td>
<td>131.81</td>
<td>113.80</td>
</tr>
</tbody>
</table>
Discussion

• Energy intensity has increased in all sectors.
• Increase in CO$_2$ sectoral emission intensity for all sectors except commercial and industrial.
• Sectoral emission changes indicate probable changes in energy consumption pattern of these sectors. Also other factors like lower capacity utilization, fuel switching, etc.
• Reductions in total amount of GHG emissions could result from changes in technologies, fuel switching, and improvement in end-use efficiencies.
• Energy conservation and energy efficiency programs of government successful?
Conclusion

- Most of the greenhouse gases attributable to Thailand originate from the demand for electricity, generated from a combination of fossil fuels, by almost all sectors of the economy.
- Industrial and transportation sectors of Thailand’s economy are still the most energy intensive sectors.
- Comparison of study result with a similar one shows reduction in Thailand’s total energy intensity.
- Diverse energy efficiency programs for designated factories and large commercial buildings introduced can be said to be effective.
THANK YOU
Energy sector

- Comprised of: Coal and Lignite, Crude Oil and Natural Gas, Petroleum Refinery and Gas Separated Plant, Other Coal and Petroleum Products, Electricity, as well as Pipeline
Energy Sources for Electricity Generation

1999

- Fuel oil: 18.8%
- Natural gas: 57.6%
- Hydro: 4.3%
- Coal & lignite: 18.7%

2004

- Natural gas: 76.0%
- Diesel: 3.0%
- Fuel oil and others: 1.0%
- Coal & Lignite: 17.0%
- Hydro: 3.0%

: Thailand Energy Statistics, DEDE, 2004