The Joint Graduate School of Energy and Environment
Notes of Guidance for Submission and Format of the Final Thesis Report

Submission

1. Master of Philosophy, Master of Science and Doctor of Philosophy students are required to submit copies of the progress report to the JGSEE and all members of the thesis committee, at least 2 weeks before the examination date.

General Format of the Final Thesis Report—(Experimental thesis)

1. GENERAL FORMAT

Paper: Paper should be A4 size (21.6 x 28 cm), white, unlined

Format: Printed, 1.5 lines-space, single sided, 0 paragraph spacing before and after.

Margins: 3 cm margins top and left side, 2.5 cm bottom and right sides.

Page numbering: centered at top of each page in a header. Chapter pagination continues in sequence.

Page numbering style: Body of the report, appendixes—use Arabic numerals (1, 2, 3, etc)

Opening pages e.g. Acknowledgements, Abstract—use Roman numeral (i, ii, iii etc)

DO NOT put page numbers on the cover (title) page or the inner (title) page.

The elements of the paper are listed below in the order in which they should appear.

- **The cover page in dark blue** should carry only the following information using CAPITALIZED; thesis title, student name, ID no., degree, program, school, year when dissertation is first submitted for examination. (see attachment 1).

- The report should have a **first title page** including thesis title, student name, degree, program, school, co-university and the name of thesis committee and external examiner, including the place for their signatures (see attachment 2).

- **A second title page** includes thesis title, student name, advisor name, co-advisor name (if any), oversea collaborators, and also contacted address and telephone number for every name (see attachment 3).
2. CONTENT

- The CONTENTS page should be headed with the words CONTENTS centered on the page.

Chapter titles should be CAPITALIZED. On the right-hand side of the Contents pages give the beginning number of each chapter.

Number theses pages of lists of tables, figures, illustrations, and abbreviations are roman numerals (v-five, vi-six, vii-seven)

The CHAPTERS TITLES of your thesis should be numbered 1, 2, 3, . ; etc.

The Section Headings of each chapter should have Capitalized Initial Letters. The sections in the chapters should be numbered 1.1, 1.2, ... ; 2.1, 2.2, ... ; 3.1, 3.2, ... ; etc.

- LIST OF TABLES
 Tables should be appropriate to the contents of the report. Tables should be clear and easy to read. Tables, which contain much detail, should be avoided or edited to show the important aspect (s). Table should be numbered. It is customary to show table numbering above the table. The first number is the chapter number; the second number shows the sequential of tables in the chapter. Thus, Table 4.1 is the first table in chapter four.

- LIST OF FIGURES
 As with tables, figures should be appropriate to the report. Figures should be clear and easy to read. Over-detailed figures (i.e. ones that contain much data) should be avoided. Figures should be numbered below the figure. The number and title of each figure appears at the center on the first line below the figure itself. The first number is the number of the chapter in which the figure appears. The second number shows the sequential of figures in the chapter. Thus, Figure 4.8 is the eighth figure in chapter four.
LIST OF ILLUSTRATIONS

LIST OF SYMBOLS AND ABBREVIATIONS
These may be listed on one page with the heading LIST OF ………….. The heading should be centered at the top of the page.

THE BODY OF THE REPORT
The body of the report begins on page 1 with CHAPTER 1: INTRODUCTION. This should appear in CAPITAL LETTERS, centered at the top of the page.

Chapters divided into sections all with separate headings.

Main headings use bold 12 pt and Capitalized Initial Letters of the key word. Other grammatical linking words (“and”, “by”, “with”, “for”) should be in lower case lettering.

Subheadings are indented one tab. Use bold 12 pt and Capitalized Initial Letters of the key word. Other grammatical linking words (“and”, “by”, “with”, “for”) should be in lower case lettering.

Sub-Subheadings are indented two tabs. Use 12 pt and Capitalized Initial Letters of the key word.

CHAPTER 1 INTRODUCTION
Introduction section should include the following key elements:

1.1 Rational/ Problem Statement
What is the rational for conducting the research?
What is the main approach of the research?

1.2 Objectives
Explicitly state the main objectives of your research

CHAPTER 2 PROGRESS OF WORK
Summarize work that has been done in this semester.

2.1 Methodology
2.2 Results
2.3 Occurred problems

CHAPTER 3 WORKING SCHEDULE
Indicate your anticipated future process and methods include a current working schedule.

CHAPTER 4 EXPECTED RESULTS
Give details of your results to date, and indicate your expected future results.

CHAPTER 5 CONCLUSION
Summarize your conclusion
Discuss the weak points of your thesis, and describe how it could be improved.

3. CITATIONS AND BIBLIOGRAPHY WRITING
You must follow the following details in writing citations and bibliography or references.

3.1 Citations
You can use one of the two types of citation systems: number system, and name-year system.

3.1.1 Number system
Put a number of the cited document in brackets, such as [1], [2] at the end of cited name or content in the text. In case where several document are cited for the same content, you can separate each number by , in the same bracket: [1, 2, 3]. In this system, once you assign a number to a document, you must consistently use that number foe that document throughout the thesis. In case where you mention more than 3 authors’ name, write only the last name of the first author followed by “et al.”. For example:

Sugiura et al. [6] proposed that…

3.1.2 Name-year system
3.1.2.1 Mention the name (s) of author(s) and publication year at the end of the cited content in the text. If you cite more than one document, separate them with (;). Use Christian era for the publication dates.

3.1.2.2 In case where there are more than 3 authors, write only the last name of the first author followed by a comma and “et al.”. For example:
Price-Williams, et al. (1999) found that ….

3.1.2.3 In case where you quote from a document, mention the page number from which you quote at the end of publication year, in parentheses. For example:

Deuzen-Smith (1988, p. 29) argued that counselors must be involved with clients and “deeply interested in piecing the puzzle of life together”

3.1.2.4 If the quoting is long, putting it in a following paragraph, which has a different pagination from normal text, and the spacing is less than in normal text. For example:

Barlett (1932, p. 201) explained the cyclic process of perception thus:

“Suppose I am making a stroke in a quick game, such as tennis or cricket. How I make the stroke depends on the relating of certain new experiences, most of them visual, to other immediately preceding visual experience, and to my posture, or balance of posture, at the moment”.

3.2 Bibliography’s format
Bibliography (or references) has the following format.

3.2.1 Books
Name of author or editor, publication year, name of book, edition, publisher, publication place, page.

Author or editor’s name
- Start by last name, follow by first name and middle name (abbreviations). For example: Smiths, J.E.
- If the name is editor’s name, put the abbreviation (Ed.) after the name. If there are more than one editor, use (Eds.)
In case where there are three or more authors, write all the names of the authors. Separate by , any by , and between the next-to-last and the last name separate by “and”

Publication year
- Mention the year when the document was published. In case where there are more than one document by the same author, use the letters a, b, c after publication year. For example: 1986a, 1986b

Edition
- You do not have to mention if it is the first edition
- From the second edition and after, you have to mention by using 2nd ed. or 3rd ed., for example.

Page
- If your source of citation is from one page, use p. followed by the page number. But if the citation is from several continuous pages, use pp. followed by the first cited page, - , and the last cited page.

3.2.2 Article in a journal
Name of author, publication year, “name of article”, name of journal, Vol., No., pp.

3.2.3 Article in a proceeding
Name of author, publication year, “name of article”, name of conference, other detail of conference such as date, place, pp.

3.2.4 Article in a book
Name of author, publication year, “name of article”, In name of book, name of editor or compiler, edition, publish, publication place, pp.

3.2.5 Article in newspaper
Name of author, publication year, “name of article”, name of newspaper, date, pp.
3.2.6 Thesis
Name of author, publication year, name of thesis, degree, major, faculty, university

3.2.7 Patent
Name of patent’s owner, year of patent, name of invented equipment, country, patent number

3.2.8 Electronic documents
3.2.8.1 Full-text from on-line database such as Science Direct, ABI/Inform, IEEE Xplorer

Name of author, publication year, “name of article”, name of electronic journal, year, vol., pp., Available: name of publisher/database [date of search].

3.2.8.2 Abstract from on-line database, such as Applied Science and Technology Plus, and Science Direct

Name of author, publication year, [Abstract of “name of article”, name of electronic journal, Vol., No., pp.] Available: name of publisher/database [date of search].

3.2.8.3 Full-text from E-journals such as Journal of Applied Physics

Name of author, publication year, “name of article”, name of E-journal. Vol., No., pp., Available: name of publisher [date of search]

3.2.8.4 Information from World Wide Web

Name of author, publication year, name of Web Page [Online], Available: URL [date of search].
3.3 Bibliography (Number System)

Put the references in the order of the number cited in the thesis. Type the number of each reference at the left margin, as shown in the following example:

3.4 Bibliography (Name-Year System)

Put all the references in alphabetical order. Start typing at the left margin. See the following examples:

4. APPENDIXES (if needed).

The appendix should contain copies of documents that have been used in the research. Examples are: research instruments (questionnaires, interview checklists, names of respondents); research data (raw data, computed results). Each appendix should be
numbered. Page numbering should be continued from the page numbering in the body of the report. If you have Appendix more than one, please use A, B, C…. to list them.

Appendices follow the list of references.

Example:

Appendix A: Questionnaire

Appendix B: Derivation of equations
INVESTIGATION OF TRANSMISSION OF DAYLIGHT THROUGH CIRCULAR LIGHT PIPES WITH SPECULAR SURFACES

MR. SIAM SAMUHATANANON
ID: 52910003

A THESIS SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN ENERGY TECHNOLOGY

THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI

2ND SEMESTER 2010

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT
INVESTIGATION OF TRANSMISSION OF DAYLIGHT THROUGH CIRCULAR LIGHT PIPES WITH SPECULAR SURFACES

MR. SIAM SAMUHATANON

2/2010

Font's colour: Gold yellow.
Page colour: Dark blue.
Investigation of Transmission of Daylight through Circular Light Pipes with Specular Surfaces

Mr. Siam Samuhatananon
ID: 52910003

A Thesis Submitted as a Part of the Requirements
for the Degree of Master of Philosophy
in Energy Technology

The Joint Graduate School of Energy and Environment
at King Mongkut’s University of Technology Thonburi

2nd Semester 2010

Thesis Committee

Prof. Dr. ………………….
Center

Assoc. Prof. Dr. ………………
Co-Advisor (if any)

Asst. Prof. Dr. ………………
Member

Asst. Prof. Dr. ………………
Member

Dr. ……………………
External Examiner
Thesis Title: Investigation of Transmission of Daylight through Circular Light Pipes with Specular Surfaces

Student's name, organization and telephone/fax numbers/email

Mr. Siam Samuhatanan
The Joint Graduate School of Energy and Environment (JGSEE)
King Mongkut’s University of Technology Thonburi (KMUTT)
126 Pracha Uthit Rd., Bangmod, Tungkru, Bangkok 10140 Thailand
Telephone: 0-8677-70543
Email: hoo_siam@hotmail.com

Advisor's name, organization and telephone/fax numbers/email

Prof. Dr. Surapong Chirarattananon
The Joint Graduate School of Energy and Environment (JGSEE)
King Mongkut’s University of Technology Thonburi (KMUTT)
126 Pracha Uthit Rd., Bangmod, Tungkru, Bangkok 10140 Thailand
Telephone: 0-8979-84204 or 02-8729014-5 ext 4128
Email: surapong@jgsee.kmutt.ac.th
Topic: Investigation of Transmission of Daylight through Circular Light Pipes with Specular Surfaces

Name of student: Mr. Siam Samuhatanan
Student ID: 52910003
Name of Advisor: Prof. Dr. Surapong Chirarattananon

ABSTRACT

Insert 1 blank line

Keywords:,,,
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>NOMENCLATURES</td>
<td>xi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1. Rational/Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2. Literature Review</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.3. Research Objectives</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>THEORIES</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.1 Theoretical Background</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.2 Mathematical Model</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3.1 Experimental Set-up</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3.2 System Modeling</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>4.1 Simulation Program</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>4.2 Simulation Results</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>4.3 System Performance</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>CONCLUSION AND FUTURE WORK</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5.1 Conclusions</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>5.2 Future Work</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>APPENDIXES</td>
<td>67</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>X</td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>..</td>
<td>X</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Time schedule of electricity tariffs.</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Electricity costs (TOD Rate) for commercial building.</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Electricity costs (TOU Rate) for commercial building.</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristic of the components in the chilled water cycle.</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Characteristic of the components in the ice storage cycle.</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>The comparison of ice formation between the simulation and the experiment.</td>
<td>46</td>
</tr>
<tr>
<td>5.1</td>
<td>The electrical energy consumed in the office.</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>The characteristic of the selected office (R1 to R5).</td>
<td>51</td>
</tr>
<tr>
<td>5.3</td>
<td>Design conditions under the design day.</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>The result of cooling load calculation of the selected office on the design day.</td>
<td>52</td>
</tr>
<tr>
<td>5.5</td>
<td>Electricity costs (TOU Rate) for commercial building.</td>
<td>56</td>
</tr>
<tr>
<td>5.6</td>
<td>The peak energy demand occurred during on-peak period at various categories on the design day.</td>
<td>57</td>
</tr>
<tr>
<td>5.7</td>
<td>Electricity charge of the office during the year due to the 5th category system combination.</td>
<td>59</td>
</tr>
<tr>
<td>5.8</td>
<td>The installation cost of the ice storage system.</td>
<td>60</td>
</tr>
<tr>
<td>B.1</td>
<td>The present worth of the total profit gained during the lifetime of the system</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont')

<table>
<thead>
<tr>
<th>TABLES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>…………………………………………………………………….</td>
<td>X</td>
</tr>
</tbody>
</table>

If any
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Hourly load profile for a building with a conventional air conditioning system on design day compared with three thermal energy storage strategies.</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic diagram of building circuit for ice thermal energy storage.</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic of direct contact evaporator tank.</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of the experimental set-up.</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram of the experimental set-up for the ice storage system.</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>The relation between pressure ratio of the compressor and a function of $m_r T_{cp,i}^{0.5}/P_{cp,i}$</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>The relation between pressure ratio of the compressor and a function of $m_r T_{cp,o}^{0.5}/P_{cp,o}$.</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>The relation between mass flow rate of the refrigerant and the polytropic index of the compressor in chilled water system.</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>The relation between the pressure ratio in the chilled water system and the refrigerant mass flow rate.</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>The relation between the pressure ratio of the compressor and the pressure ratio of the expansion valve in the chilled water system</td>
<td>31</td>
</tr>
<tr>
<td>3.8</td>
<td>The relation between pressure ratio of the compressor in the ice storage system and a function of $m_r T_{cp,o}^{0.5}/P_{cp,o}$ and N.</td>
<td>33</td>
</tr>
<tr>
<td>3.9</td>
<td>The relation between mass flow rate of refrigerant and the polytropic index of the compressor in ice storage system.</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>The effect of mass flow rate of air and total heat transfer</td>
<td></td>
</tr>
</tbody>
</table>
Abs solar absorptance
ASH the absorbed solar radiation equivalence to ESR due to heart stored in the interior walls from absorption of transmitted solar radiation during daytime, W/m2
BR bed room
C convection heat flux, W.m-2
CHAPTER 1
INTRODUCTION

1.1 xxxxx

Before starting new head topic, insert 1 bank line before and after.

...
...
...
...
...

1.1.1 xxxxx

...
...
...
...
...

1.2 xxxxx

Before starting new head topic, insert 1 bank line before and after.

...
...
...
...
...
Table 1.1 xxxxxxxxxxxxxxxxxxx

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3 xxxxxxx

Before starting new head topic, insert 1 blank line before and after.
Figure 1.1 xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Insert 1 blank line

-figure

Insert 1 blank line

-figure

-insert 1 blank line

-insert 1 blank line
REFERENCES

REFERENCES (Con’t) If any
APPENDIXES: A