
Principles of Solar Thermal Conversion
Conversion to Work

Heat from a solar collector may be used to drive a heat engine operating in a cycle to
produce work. A heat engine may be used for such applications as water pumping and
generating electricity.

The thermal output Qout of a concentrating collector operating at temperature T is
given by

Qout = F'[γAinqin − UAabs(T − Ta)],

where Ain is the area of the incident solar radiation and Aabs is the area of the absorber.
(The other symbols are the same as in the other lecture notes.) The quantity Ain/Aabs is
called the concentration ratio. High concentration ratios are obtained by making Ain
the area of a system of mirrors designed to concentrate the solar radiation received onto
a small absorber of area Aabs. Heat losses from the absorber are reduced by the smaller
size of the absorber. Consequently, high concentration ratios give high collector
temperatures. The stagnation temperature Tmax is given by:

γAinqin = UAabs(Tmax − Ta).

For example, if the optical efficiency is γ = 0.8, the incident solar irradiation is qin =
800 W/m2, the ambient temperature is Ta = 30°C, and the heat loss coefficient is U =
10 W/m2K, then a concentration ratio Ain/Aabs = 1 (no concentration) gives Tmax =
94°C, and a concentration ratio Ain/Aabs = 10 gives Tmax = 670°C.

The collector efficiency ηc at operating temperature T is

ηc = Qout/Ainqin = F'[γ − UAabs(T − Ta)/Ainqin] = F'γ(Tmax − T)/(Tmax − Ta).

The available mechanical power from the thermal power output of the collector that
would be obtained using a Carnot cycle is Qout(1 − Ta/T), where the temperatures are
absolute temperatures.

The second law efficiency η2 of a heat engine is defined by

η2 = (mechanical power delivered)/(available mechanical power).



Suppose a heat engine with second law efficiency η2 uses as input the thermal power
Qout from the solar collector. The first law efficiency of the engine is

η1 = (mechanical power delivered)/Qout = η2(1 − Ta/T),

and the first law efficiency η of the system (collector plus heat engine) is

η = ηcη1.

Now, given F', γ, η2, Ta, and Tmax, we can find the maximum efficiency obtainable,
and the optimum operating temperature Topt from the condition d(η)/dT = 0. This
occurs at the optimum temperature

Topt = √[TmaxTa],

and the maximum efficiency is obtained by putting T = Topt

For example, putting F' = 0.9, γ = 0.8, η2 = 0.6, Ta = 30°C = 303 K, we get the
efficiencies ηmax for different degrees of concentration shown in Table 1. Very low
overall efficiencies are obtained unless operating temperatures greater than 500°C are
used. Expensive concentrating systems are needed to reach these high temperatures, so
commercial viability is difficult.

Table 1. Efficiencies for
Converting Solar

Radiation to Work
Tmax Topt ηmax

100°C 63°C 2.2%

200°C 106°C 4.8%

400°C 179°C 8.5%

800°C 297°C 13.2%

1600°C 480°C 18.4%

Domestic Water Heating

Suppose we wish to add heat Qr to a reservoir at temperature Tr from a collector at
temperature T > Tr. If the heating power from the collector is Qout, the first law
efficiency of the heat transfer process is

η1 = Qr/Qout.



The available mechanical power in the heat extracted from the collector is

Qout(1 − Ta/T).

The mechanical power that would be needed to operate a reversible heat pump
delivering heat Qr to the reservoir at temperature Tr from ambient temperature Ta is

Qr(1 − Ta/Tr).

Therefore, the second law efficiency η2, defined as the mechanical power needed for
heating divided by the available mechanical power, is given by

η2 = Qr(1 − Ta/Tr)/Qout(1 − Ta/T) = η1(1 − Ta/Tr)/(1 − Ta/T).

This has its maximum value η2 = η1 when T = Tr.

Collector efficiency increases as Tmax increases, but acceptable efficiencies at the
temperatures 50°C to 60°C needed for domestic hot water systems are obtainable with
flat-plate collectors.

Concentrating collectors producing heat at temperatures T considerably greater than Tr
give low second law efficiencies, and are uneconomical because of their high cost. The
use of gas or oil burning at high flame temperatures for producing domestic hot water
is also an inefficient waste of available energy.

These considerations show why domestic flat-plate solar water heaters are
commercially successful.

Refrigeration

We can use thermal solar energy to produce refrigeration by converting solar heat into
mechanical power and using this power to drive a compression refrigerator. However,
high collector temperatures are needed to generate the mechanical power with
acceptable efficiency. Consequently, it is better to use an absorption refrigerator.



Fig. 1. An absorption refrigerator.

An absorption refrigerator uses a refrigerant (such as ammonia) and an absorbent (such
as water). The cycle (Fig. 1.) consists of four parts:

1. The use of solar heat to drive off the refrigerant as a vapor from the liquid
absorbent at the collector temperature T.

2. The condensation of the refrigerant, and the rejection of the heat of condensation
at ambient temperature Ta.

3. The evaporation of the refrigerant at the refrigeration temperature Tf with the
extraction of heat from the refrigeration load.

4. The reabsorption of the refrigerant, and the rejection of the heat of adsorption at
ambient temperature Ta.

Let Qout be the solar heating power at temperature T; let Qf be the refrigeration rate at
temperature Tf; and let Qa be the heat rejection rate at temperature Ta. By the first law
of thermodynamics, since energy is conserved,

Qout + Qf = Qa.

By the second law of thermodynamics, since the entropy change in the cycle is zero,

(Qout/T) + (Qf/Tf) = Qa/Ta.

Eliminating Qa, we obtain the ideal cooling ratio

Qf/Qout = [1 − Ta/T]/[(Ta/Tf) − 1].

In real systems the actual refrigeration rate Qf' is less than ideal. We define the first law
efficiency

η1 = Qf'/Qout,



and the second law efficiency

η2 = Qf'/Qf = η[(Ta/Tf) − 1]/[1 − Ta/T].

The collector temperature T required for operating an absorption refrigerator is such
that T − Ta is slightly greater than Tc − Tf. For example, if Tf = −10°C and Ta = 30°C,
then T must be slightly greater than 80°C. This temperature can be obtained with flat-
plate collectors.

The ideal cooling ratio in this example is 0.93. In practice a first law efficiency of 0.6
might be obtained. In the latter case the second law efficiency becomes 0.64. If the
solar collector efficiency ηc is 0.5, then the overall performance of the collector and
absorption refrigerator is η = ηcη1 = 0.3.

The coefficient of performance of a compression refrigerator is defined to be the
cooling rate obtained divided by the mechanical power input. In practice this is about
3. Therefore, to obtain the same overall performance as an absorption system a solar
collector and heat engine would need a first law efficiency of 0.1. This would require a
solar operating temperature over 200°C and expensive concentrating collectors, which
use only direct solar radiation. Therefore, absorption systems seem to be more
promising for solar powered refrigeration, especially large scale use such as in food
stores and air conditioning.

Upgrading by Reversed Absorption

It is possible in principle to collect solar heat and raise the temperature of the thermal
output by means of an absorption system working in reverse. Some of the heat
collected must be sacrificed, but it is possible to reach temperatures beyond the
collector stagnation temperature Tmax. It is interesting to study the method, even
though the absorption system may be expensive compared with the cost of high
temperature collectors.

The cycle (Fig. 2) is similar to that of a solar absorption refrigeration system, except
that the working temperatures are higher.



Fig. 2. A reversed absorption heat upgrader.

The solar heating power Qout at temperature T is used partly to provide the heat of
generation Qout,1 and partly to provide the heat of evaporation Qout,2. Thus Qout =
Qout,1 + Qout,2. The condensation of the refrigerant occurs at ambient temperature Ta
accompanied by the rejection of latent heat Qa. The reabsorption of the refrigerant
vapor produces heat Qr rejected to a reservoir at temperature Tr.

By the first law we have Qout = Qr + Qa, and by the second law we have Qout/T =
(Qr/Tr) + (Qa/Ta). Eliminating Qa, we obtain the ideal heating ratio

Qr/Qout = (1 − Ta/T)/(1 − Ta/Tr).

As an example, suppose that Ta = 30°C, T = 80°C, and Tr = 140°C. Then the ideal
heating ratio is 0.53. The actual heating ratio would be less than this.

Thermodynamics of Solar Radiation

It can be shown that the thermodynamics of blackbody radiation in an enclosure in
thermal equilibrium with the walls of the enclosure is completely described by the
following equations, where α = 4σ/c, σ is the Stefan-Boltzmann constant, c is the
velocity of light, and the other symbols have their usual meanings in thermodynamics.

P = (1/3)αT4,
 U/V = αT4,

 S/V =(4/3)αT3.

The pressure P, the internal energy per unit volume U/V, and the entropy per unit
volume S/V are functions of temperature T only.



We are interested in the available mechanical power extractable from solar radiation.
This is given by the availability potential A defined by

A = U + PaV − TaS,

where Pa and Ta are the pressure and temperature of the environment. The difference
Af − Ai between a final and an initial state is the maximum available work from a
closed thermodynamic system. For radiation we have

A/V = αT4[1 − (4/3)(Ta/T) + (1/3)(Ta/T)4].

Solar radiation differs from blackbody radiation in two ways:

1. Bright sunlight is highly directional.
2. The intensity of the light is much less than that of blackbody radiation having the

same spectrum.

The nature of solar radiation can be understood as follows:

Imagine the reversible expansion of blackbody radiation from a volume V1 to a volume
V2 in an adiabatic enclosure whose walls are perfectly reflecting mirrors. The spectrum
of the radiation can be kept the same as that of a blackbody by a black particle of
matter inside the enclosure.

Since the entropy remains unchanged we have S2 = S1, so that (T2/T1)3 = V1/V2, and
the temperature decreases. The total energy αT4V also decreases because work is done
by the radiation pressure during the expansion.

Isolated radiation can (in theory) be expanded irreversibly into a second radiation-free
volume whose walls are perfect mirrors without doing work by removing a partition
separating the two volumes. If there is no black particle of matter present, the spectrum
remains the same, but the radiation occupies a larger volume. Consequently, it is no
longer blackbody radiation because its spectrum and energy density do not correspond.
As a result we cannot define a temperature for it.

However, if a black particle of matter is introduced to produce thermodynamic
equilibrium within the expanded volume, then the spectrum changes to a blackbody
spectrum. Since no energy has been exchanged with the environment, U2 = U1, and the
temperature falls in accordance with the equation

(T2/T1)4 = V1/V2.

Also the entropy is increased in accordance with the equation



S2/S1 = T2/T1.

Now imagine blackbody radiation escaping from a radiation enclosure through a
pinhole into empty space. Its energy and entropy per unit solid angle do not change
with distance because the rays can be reflected back to their source by an ideal
spherical mirror. Since the ratio S/U per unit solid angle does not change, the
temperature of the radiation does not change.

Extraterrestrial solar radiation is similar to radial blackbody radiation from a source at
5800 K after traveling a distance 150 million kilometers. Taking the temperature of the
terrestrial environment as 300 K we obtain the availability potential per unit volume
A/V = 0.93U/V. This explains why focusing direct solar radiation gives high
temperatures and high first law thermodynamic efficiencies. Corrections are needed for
the apparent size of the sun's disk, and for the attenuation of the radiation by the
atmosphere.

If solar radiation is made diffuse by reflection at an ideally white surface, the spectrum
remains unchanged but the radiation can no longer be focused. A pencil of solar
radiation let into a hollow cavity with white diffusely reflecting walls still has the same
energy and spectrum, but the energy density per unit solid angle has decreased and the
entropy has increased. The effect is the same as if the radiation had been expanded
without doing work. After the establishment of thermodynamic equilibrium with the
help of a black particle of matter, the temperature is lowered and the entropy is further
increased. It has been shown that the temperature of solar radiation after complete
diffuse reflection is 1350 K. In this case the availability potential is given by A/V =
0.70U/V. This is of interest as the theoretical upper limit to the energy available for
photosynthesis in plants.

Upper Limits to the Conversion of Solar Energy

Suppose it is possible to trap solar radiation in an enclosed volume with perfectly
reflecting walls at the temperature of the sun Ts = 5800 K. We can imagine this
radiation to be cooled by transferring heat from it to a reversible heat engine operating
between the temperature of the trapped radiation and the ambient temperature Ta. The
work W obtained is then

As − Aa = σT4[1 − (4/3)Ta/Ts + (1/3)(Ta/Ts)4].

If Ta = 300 K, then the efficiency is W/σ.T4 = 0.93.



Fig. 3. An ideal solar thermal converter.

This is of academic interest only; but we may bear it in mind when considering the
imaginary device shown in Fig. 3, which is potentially capable of achieving a high
efficiency. It consists of an ideal compound parabolic concentrator that focuses direct
solar radiation into a cavity whose walls are reflecting except for a blackbody receiver
at a temperature Tout. The black receiver transfers heat to a reversible engine to
produce work and reject heat at ambient temperature. The ideal efficiency of the heat
engine is (1 − Ta/T). The cavity is designed so that it exchanges radiation only with the
disk of the sun, which is at a temperature Ts. The efficiency of collection is therefore 1
− (T/Ts)4. Accordingly, the overall efficiency of the system is

η = [1 − (T/Ts)4][1 − Ta/T].

If Ts = 5800 K and Ta = 300 K, then the efficiency has a maximum η = 0.85 at an
operating temperature T = 2480 K. This is the theoretical limit for the conversion of
extraterrestrial solar radiation into mechanical work.

It is arguable that, because solar energy is theoretically a very high temperature
resource, we should try to harness it at this very high temperature for efficient
conversion. We should then use the waste heat for low temperature purposes instead of
downgrading the solar energy with low temperature collectors at the start. Such
considerations might be important if solar energy were to be used for many purposes
on a large scale.
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